
事例で分かる! 進化する「からくり改善」①
2025.07.31
現場にある困りごとや課題を、そこで働く人たちが見つけ出し、重力などの自然エネルギーや、歯車やてこの原理などの簡単な機構・仕組みを用いて、環境負荷を少なくローコストに改善するもの。これが「からくり改善」です。 本記事では、さまざまな事例をもとに「からくり改善」の今後の可能性について考えていきます。

装置材料の損傷・劣化「べからず集」Vol.12
2025.09.16
400℃以上で炭素鋼や低合金鋼を10年以上の長期間使用すると、図に模式的に示す様に経時的に「炭化物球状化」1)が発生・進行し、強度低下が生ずる。 炭素鋼は、同図中の初期に示す様に縞状に示すパーライト組織で、鉄と炭素の化合物が層状に分布することにより、強度を発現している。その層状の炭素鋼中の炭化物が、400℃以上程度の長期間の使用で、徐々に球状に変化し、材料としての強度の低下する現象が「炭化物球状化」である。強度の低下速度は、金属組織により異なり、温度が高いほど早い傾向がある。 また、炭素鋼や0.5%モリブデン鋼は、400℃以上の長期使用で、炭化物球状化と異なり「黒鉛化」2)と言って、鉄の炭化物が炭素(黒鉛)と鉄に分解し、強度の低下する現象の生ずる場合もある。 炭素鋼に応力が負荷されていない場合に問題が顕在化しないが、自重を含めて応力が負荷されて場合は炭化物球状化もしくは黒鉛化の発生により、規格で規定されている最低強度を下回る段階に至ると、装置の膨れ、座屈や破壊に至る場合がある。 このため400℃以上で炭素鋼や低合金鋼を長期間使用している場合は、炭化物球状化や黒鉛化の発生を監視しつつ使用する必要がある。 炭化物球状化の発生や進行を非破壊的に監視する方法としては、金属表面にてスンプ法を用いた組織観察実施や、部材の硬さを定期的に測定することが挙げられる。硬さから材料の強度が推定3)できるので、使用材料の推定強度が規格値の下限を下回った場合は、設備の更新を検討する必要がある。また、黒鉛化は、溶接熱影響部や母材部で局在化して発生する2)ことがあるので、現場での組織観察は、溶接熱影響部を中心に行う必要がある。

ものづくり屋視点による労働衛生の実践 No.7 許容できないリスクを低減する“改善”の考え方
2025.10.15

ものづくりの現場力を高める! 自主保全活動のコツ①
2025.07.30
製造業において、設備の安定稼働は生産性や品質、コスト、納期などのすべてに直結する重要な要素です。そのため、設備保全は専門部門だけではなく、オペレーター自身が主体的に取り組む「自主保全活動」が注目されています。自主保全とは、TPM(Total Productive Maintenance:全員参加の生産保全)の要素・機能の1つであり、オペレーターが設備の清掃・点検・給油・調整、簡易修理といった「設備の維持活動」を担い、故障の予防や生産性向上を図る活動です。ここでは、自主保全活動を成功に導くための工夫を第1回で、第2回では現場での効果的な事例を紹介します。